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We have introduced in the previous lecture the vector space L2T0
(R,K) of periodic signals with signal T0 which are locally

square-integrable. Before studying in detail the structure of this vector space, we review some notions of linear algebra,

especially diagonalization, and apply these concepts to signal processing. We denote V a vector space over the field K = R
or C.

1 Linear algebra review

Definition 1.1 (Linear combination, generating set)

Let v1, ... , vn be vectors of V . Let Span(v1, ... , vn) be the set of linear combinations of v1, ... , vn, i.e.

Span(v1, ... , vn) =


n∑

j=1

λjvj , (λ1, ... ,λn) ∈ Kn


Set (v1, ... , vn) is a generating set of V if V = Span(v1, ... , vn), i.e. any vector of V can be written as a linear

combination of v1, ... , vn.

Definition 1.2 (Linearly independent, linearly dependent)

A set (v1, ... , vn) is linearly independent if for any (λ1, ... ,λn) ∈ Kn, relation λ1v1 + · · · + λnvn = 0V implies

λ1 = · · · = λn = 0.

Otherwise, i.e. if there exists (λ1, ... ,λn) 6= (0, ... , 0) such λ1v1 + · · ·+ λnvn = 0V , (v1, ... , vn) is linearly dependent.

Definition 1.3 (Basis, coordinates)

A set (v1, ... , vn) is a basis of V if it is a linearly independent generating set of V . In other words, any vector of V can be

written uniquely as a linear combination of v1, ... , vn. Scalars λ1, ... ,λn appearing in this linear combination are called the

coordinates of the vector.

In the previous lectures, we have equipped the spaces L2(R,K) and L2T0
(R,K) with a scalar product or a Hermitian product.

We enrich these notions with some algebraic definitions.

Definition 1.4 (Orthogonal set, orthonormal set)

A set (v1, ... , vn) is orthogonal if for any (j , k) ∈ J1, nK2, with j 6= k , 〈vj , vk〉 = 0. Moreover, if for any j ∈ J1, nK,

‖vj‖ = 1, this set is orthonormal.

Remark: Using these definitions, we can easily prove that any orthogonal or orthonormal set is linearly independent.

1
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Definition 1.5 (Orthogonal basis, orthonormal basis)

An orthogonal basis (resp. orthonormal basis) of V is an orthogonal (resp. orthonormal) set which is a basis of V .

Remark: The interest in orthonormal bases is to easily express the coordinates of a vector from its scalar product with the

vectors of the basis. Indeed, if (v1, ... , vn) is an orthonormal basis of V , then any vector x of V can be written

x =
n∑

j=1

〈x , vj〉vj

2 Diagonalization

A matrix provides the representation of a linear mapping within a vector space in a given basis, but this single data does not

seem enough to ”geometrically” interpret the behavior of this mapping. For instance, consider the following 2× 2 matrix:

A =

(
1.64 0.48

0.48 1.36

)

We apply this matrix to vectors v1 and v2 of the standard basis of R2:

v1 =

(
1

0

)
Av1 =

(
1.64

0.48

)
v2 =

(
0

1

)
Av2 =

(
0.48

1.36

)

e1

Ae1

e2
Ae2

As shown in this figure, the transform rotates and scales these vectors, but it seems difficult to deduce a general behavior.

The idea is to find cases for which the transform only scales the input vector. Thereby, λ is an eigenvalue of A if there

exists a non-zero vector u such that Au = λu. Vector u is called an eigenvector of A associated with eigenvalue λ. We

possibly aim at determining a basis of eigenvectors, enabling the representation of the transform with a diagonal matrix only

displaying the scalings in given directions. This process is called the diagonalization of A.

The first step consists in computing the eigenvalues, which are the roots of the characteristic polynomial:

χA(λ) = det(A− λI2) =

∣∣∣∣∣ 1.64− λ 0.48

0.48 1.36− λ

∣∣∣∣∣ = (λ− 1.64)(λ− 1.36)− 0.482 = λ2 − 3λ+ 2 = (λ− 2)(λ− 1)

Thus the eigenvalues of A are 2 et 1.

The second step consists in determining eigenvectors u2 and u1, respectively associated with eigenvalues 2 and 1. Moreover,

we look for vectors with norm 1 to obtain, if possible, an orthonormal basis. To find eigenvector u2, we write:

A

(
x

y

)
= 2

(
x

y

)
=⇒

{
1.64x + 0.48y = 2x

0.48x + 1.36y = 2y
=⇒ x =

4

3
y
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so that u2 =

(
0.8

0.6

)
is an eigenvector of A associated with eigenvalue 2 and with norm 1. With the same reasoning, we

find u1 =

(
−0.6
0.8

)
as eigenvector of A associated with eigenvalue 1 and with norm 1.

u2

Au2

u1 = Au1

Computing 〈u2, u1〉 = 0.8× (−0.6) + 0.6× 0.8 = 0, we prove that (u2, u1) if an orthonormal basis of R2. We can write

any vector x ∈ R2 as:

x = 〈x , u2〉u2 + 〈x , u1〉u1

along with its image by A:

Ax = 〈x , u2〉Au2 + 〈x , u1〉Au1 = 2〈x , u2〉u2 + 〈x , u1〉u1

For instance e1 can be written e1 = 0.8u2 − 0.6u1, and its image Ae1 = 1.6u2 − 0.6u1.

u2
u1

e1

Ae1

We can see on this figure that u2 coordinate of vector e1 is multiplied by 2, while the u1 coordinate is unchanged (multiplied

by 1).

3 Application to signal processing

We apply these ideas to our study of signals and systems by considering the signal vector space F(R,K). In this case, LTI

systems correspond to matrix A (since they are linear), and input signals are arguments of this mapping. In this context, we

talk about eigenfunctions instead of eigenvectors to insist on the fact that F(R,K) is a space containing functions. The

following proposition provides a very important result about some eigenfunctions of an LTI system.

Proposition 3.1

For any ω ∈ R, complex exponential eω : R→ C t 7→ e iωt is an eigenfunction of any LTI system. In other words, if L is

an LTI system, then there exists H(ω) ∈ C such that L(eω) = H(ω)eω .
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PROOF : We set ω ∈ R and L an LTI system of impulse response h = L(δ). Then for any t ∈ R,

L(eω)(t) = (eω ∗ h)(t) =
∫ +∞

−∞
h(u)e iω(t−u)du = e iωt

∫ +∞

−∞
h(u)e−iωudu

thus L(eω) = H(ω)eω with H(ω) =

∫ +∞

−∞
h(u)e−iωudu, therefore eω is an eigenfunction of L.

Remarks:

I WARNING: the complex exponentials are some eigenfunctions but not necessarily all the eigenfunctions of a given LTI

system. For instance, consider the complex-valued differential system D : F(R,C)→ F(R,C) x 7→ x ′. Then any

complex number s = a + ib ∈ C is an eigenvalue of D, whose associated eigenfunctions Kest = Keate ibt are the

solutions of the differential equation: D(x) = x ′ = sx . In this example, complex exponential eω corresponds to a = 0

and b = ω.

I We will study in detail the expression of the eigenvalue H(ω) in the lecture about Fourier transform.

I We have seen in the previous lecture that if we input a sine or a cosine into the RC circuit, we obtain an output which

is a linear combination of sine and cosine with the same fundamental impulse. This result is now explained with this

proposition. We generalize this idea in the next lecture.
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