Diagonalization

Guillaume Frèche

Version 1.0

We have introduced in the previous lecture the vector space $L^2_{\tau_0}(\R,\mathbb{K})$ of periodic signals with signal τ_0 which are locally square-integrable. Before studying in detail the structure of this vector space, we review some notions of linear algebra, especially diagonalization, and apply these concepts to signal processing. We denote V a vector space over the field $\mathbb{K} = \mathbb{R}$ or C.

1 Linear algebra review

Definition 1.1 (Linear combination, generating set)

Let $v_1, ..., v_n$ be vectors of V. Let Span $(v_1, ..., v_n)$ be the set of **linear combinations** of $v_1, ..., v_n$, i.e.

$$
\mathrm{Span}(v_1,\ldots,v_n)=\left\{\sum_{j=1}^n\lambda_jv_j,(\lambda_1,\ldots,\lambda_n)\in\mathbb{K}^n\right\}
$$

Set $(v_1, ..., v_n)$ is a generating set of V if $V = Span(v_1, ..., v_n)$, i.e. any vector of V can be written as a linear combination of v_1, \ldots, v_n .

Definition 1.2 (Linearly independent, linearly dependent)

A set $(v_1,...,v_n)$ is **linearly independent** if for any $(\lambda_1,...,\lambda_n) \in \mathbb{K}^n$, relation $\lambda_1v_1+\cdots+\lambda_nv_n=0$ *v* implies $\lambda_1 = \cdots = \lambda_n = 0.$

Otherwise, i.e. if there exists $(\lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0)$ such $\lambda_1v_1 + \cdots + \lambda_nv_n = 0_V$, (v_1, \ldots, v_n) is **linearly dependent**.

Definition 1.3 (Basis, coordinates)

A set $(v_1, ..., v_n)$ is a **basis** of V if it is a linearly independent generating set of V. In other words, any vector of V can be written uniquely as a linear combination of $v_1, ..., v_n$. Scalars $\lambda_1, ..., \lambda_n$ appearing in this linear combination are called the **coordinates** of the vector.

In the previous lectures, we have equipped the spaces $L^2(\R,\mathbb{K})$ and $L^2_{\mathcal{T}_0}(\R,\mathbb{K})$ with a scalar product or a Hermitian product. We enrich these notions with some algebraic definitions.

Definition 1.4 (Orthogonal set, orthonormal set)

A set $(v_1, ..., v_n)$ is **orthogonal** if for any $(j, k) \in [\![1, n]\!]^2$, with $j \neq k$, $\langle v_j, v_k \rangle = 0$. Moreover, if for any $j \in [\![1, n]\!]$, $||v_i|| = 1$, this set is **orthonormal**.

Remark: Using these definitions, we can easily prove that any orthogonal or orthonormal set is linearly independent.

Definition 1.5 (Orthogonal basis, orthonormal basis)

An **orthogonal basis** (resp. **orthonormal basis**) of V is an orthogonal (resp. orthonormal) set which is a basis of V.

Remark: The interest in orthonormal bases is to easily express the coordinates of a vector from its scalar product with the vectors of the basis. Indeed, if (v_1, \ldots, v_n) is an orthonormal basis of V, then any vector x of V can be written

$$
x=\sum_{j=1}^n\langle x,v_j\rangle v_j
$$

2 Diagonalization

A matrix provides the representation of a linear mapping within a vector space in a given basis, but this single data does not seem enough to "geometrically" interpret the behavior of this mapping. For instance, consider the following 2×2 matrix:

$$
A = \left(\begin{array}{cc} 1.64 & 0.48 \\ 0.48 & 1.36 \end{array}\right)
$$

We apply this matrix to vectors v_1 and v_2 of the standard basis of \mathbb{R}^2 :

As shown in this figure, the transform rotates and scales these vectors, but it seems difficult to deduce a general behavior. The idea is to find cases for which the transform only scales the input vector. Thereby, λ is an **eigenvalue** of A if there exists a non-zero vector u such that $Au = \lambda u$. Vector u is called an **eigenvector** of A associated with eigenvalue λ . We possibly aim at determining a basis of eigenvectors, enabling the representation of the transform with a diagonal matrix only displaying the scalings in given directions. This process is called the **diagonalization** of A.

The first step consists in computing the eigenvalues, which are the roots of the characteristic polynomial:

$$
\chi_A(\lambda) = \det(A - \lambda I_2) = \begin{vmatrix} 1.64 - \lambda & 0.48 \\ 0.48 & 1.36 - \lambda \end{vmatrix} = (\lambda - 1.64)(\lambda - 1.36) - 0.48^2 = \lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1)
$$

Thus the eigenvalues of A are 2 et 1.

The second step consists in determining eigenvectors u_2 and u_1 , respectively associated with eigenvalues 2 and 1. Moreover, we look for vectors with norm 1 to obtain, if possible, an orthonormal basis. To find eigenvector u_2 , we write:

$$
A\left(\begin{array}{c} x \\ y \end{array}\right) = 2\left(\begin{array}{c} x \\ y \end{array}\right) \implies \begin{cases} 1.64x + 0.48y = 2x \\ 0.48x + 1.36y = 2y \end{cases} \implies x = \frac{4}{3}y
$$

so that $u_2 =$ $\left(\begin{array}{c} 0.8 \ 0.6 \end{array}\right)$ is an eigenvector of A associated with eigenvalue 2 and with norm 1. With the same reasoning, we find $u_1 =$ $\left(\begin{array}{c} -0.6 \ 0.8 \end{array} \right)$ as eigenvector of A associated with eigenvalue 1 and with norm 1.

Computing $\langle u_2,u_1\rangle=0.8\times(-0.6)+0.6\times0.8=0,$ we prove that (u_2,u_1) if an orthonormal basis of \R^2 . We can write any vector $x \in \mathbb{R}^2$ as:

$$
x = \langle x, u_2 \rangle u_2 + \langle x, u_1 \rangle u_1
$$

along with its image by A:

$$
Ax = \langle x, u_2 \rangle Au_2 + \langle x, u_1 \rangle Au_1 = 2\langle x, u_2 \rangle u_2 + \langle x, u_1 \rangle u_1
$$

For instance e_1 can be written $e_1 = 0.8u_2 - 0.6u_1$, and its image $Ae_1 = 1.6u_2 - 0.6u_1$.

We can see on this figure that u_2 coordinate of vector e_1 is multiplied by 2, while the u_1 coordinate is unchanged (multiplied by 1).

3 Application to signal processing

We apply these ideas to our study of signals and systems by considering the signal vector space $\mathcal{F}(\mathbb{R}, \mathbb{K})$. In this case, LTI systems correspond to matrix A (since they are linear), and input signals are arguments of this mapping. In this context, we talk about **eigenfunctions** instead of eigenvectors to insist on the fact that $\mathcal{F}(\mathbb{R}, \mathbb{K})$ is a space containing functions. The following proposition provides a very important result about some eigenfunctions of an LTI system.

Proposition 3.1

For any $\omega\in\R,$ complex exponential $e_\omega:\R\to\mathbb C\quad t\mapsto e^{i\omega t}$ is an eigenfunction of any LTI system. In other words, if L is an LTI system, then there exists $H(\omega) \in \mathbb{C}$ such that $L(e_{\omega}) = H(\omega)e_{\omega}$.

PROOF: We set $\omega \in \mathbb{R}$ and L an LTI system of impulse response $h = L(\delta)$. Then for any $t \in \mathbb{R}$,

$$
L(e_{\omega})(t)=(e_{\omega}*h)(t)=\int_{-\infty}^{+\infty}h(u)e^{i\omega(t-u)}du=e^{i\omega t}\int_{-\infty}^{+\infty}h(u)e^{-i\omega u}du
$$

thus $\displaystyle L(e_\omega)=H(\omega)e_\omega$ with $H(\omega)=\int_{-\infty}^{+\infty}$ $h(u)e^{-i\omega u}du$, therefore e_{ω} is an eigenfunction of L.

Remarks:

- ► WARNING: the complex exponentials are some eigenfunctions but not necessarily all the eigenfunctions of a given LTI system. For instance, consider the complex-valued differential system $D : \mathcal{F}(\mathbb{R},\mathbb{C}) \to \mathcal{F}(\mathbb{R},\mathbb{C}) \to x \mapsto x'$. Then any complex number $s=a+ib\in\mathbb{C}$ is an eigenvalue of $D,$ whose associated eigenfunctions $Ke^{st}=Ke^{at}e^{ibt}$ are the solutions of the differential equation: $D(x)=x'=s$. In this example, complex exponential e_ω corresponds to $a=0$ and $b = \omega$.
- \blacktriangleright We will study in detail the expression of the eigenvalue $H(\omega)$ in the lecture about Fourier transform.
- \blacktriangleright We have seen in the previous lecture that if we input a sine or a cosine into the RC circuit, we obtain an output which is a linear combination of sine and cosine with the same fundamental impulse. This result is now explained with this proposition. We generalize this idea in the next lecture.